If sinx+siny+sinz=3 find the value of cosx+cosy+cosz.
Compare range of LHS and RHS
-1≤sinx≤1∀x∈ℝ-1≤siny≤1∀x∈ℝ-1≤sinz≤1∀x∈ℝ
Adding all the three above Equations
⇒-3≤sinx+siny+sinz≤3
Which is possible only when sinx=siny=sinz=1
⇒cosx=cosy=cosz=0∵sin2x+cos2x=1
Hence the Value of cosx+cosy+cosz is 0.
(i) If z = 10, find the value of z3 − 3 (z − 10).
(ii) If p = − 10, find the value of p2 − 2p − 100
(i) If sin x=13, find the value of sin 3x
(ii) If cos x=12, find the value of cos 3x