The correct option is C V−4A2F
Given:
Y∝VaAbFc…(i)
As we know,
Y=Δll=ForceArea=Fa
Dimension of F=MLT−2
Dimension of area (a)=L2
Dimension of V=LT−1
Dimension of acceleration (A)=LT−2
MLT−2L2=[LT−1]a[LT−2]b[MLT−2]c
[MLT−2]L2=McLa+b+cT−a−2b−2cML−1=McLa+b+c+2T−a−2b−2c
By comparing the above equations, we get,
c=1…(ii)
a+b+c=−1
⇒a+b=−2…(iii)
−a−2b−2c=−2
From equation (ii),
a+2b=0…(iv)
From equation (iii) and (iv) we get,
a=−4
Now put the value of a=−4 in equation (iii) we get,
b=2
Hence, by putting the values of a,b,c in equation (i) we get,
Y∝V−4A2F1
Final answer:(b)