The correct option is D −π4
Given: √5−12i+√−5−12i=z
Square root of a complex number a+ib is given by
√a+ib
=±(√12[√a2+b2+a]−i√12[√a2+b2−a])
⇒√5−12i=±(3−2i) and
√−5−12i=±(2−3i)
⇒ z=−1−i,−5+5i,5−5i,1+i
Therefore, principal values of arg z are −3π4,3π4,−π4,π4