If √1+cosθ1−cosθ=cosecθ+cotθ, where θ=kπ8,k∈N, then the number of possible value(s) of θ∈[0,2π] is
A
7.00
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
7.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
7
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
Given √1+cosθ1−cosθ=cosecθ+cotθ
So, θ≠{0,π,2π}
Now, √1+cosθ1−cosθ×1+cosθ1+cosθ=cosecθ+cotθ⇒√(1+cosθ)21−cos2θ=cosecθ+cotθ⇒|1+cosθ||sinθ|=cosecθ+cotθ⇒1+cosθ|sinθ|=cosecθ+cotθ(∵1+cosθ≥0)⇒1+cosθ|sinθ|=1+cosθsinθ
It is possible if sinθ>0⇒π>θ>0⇒π>kπ8>0∴k∈(0,8),k∈N