The correct options are
A 2xc2
B xy+√y2−x2
D y−√y2−x2x
√y+x+√y−x=c
Squaring both sides, we get
(√y+x+√y−x)2=c2
2y+2√y2−x2=c2
y+√y2−x2=c22...........(1)
Differentiating bothe the sides, we get
dydx+12√y2−x2(2ydydx−2x)=0
dydx+y√y2−x2dydx−x√y2−x2=0
dydx(1+y√y2−x2)=x√y2−x2
dydx=xy+√y2−x2..................Option (b)
On rationalizing we get,
dydx=x(y−√y2−x2)x2
=y−√y2−x2x........Option (c)
Putting y+√y2−x2=c2. we get
dydx=xc22=2xc2......... Option (a)