If sum of the squares of first n natural numbers exceeds their sum by 330, then find the value of n.
∑n2 = 330 + ∑n
⇒ n(n+1)(2n+1)6 = 330 + n(n+1)2
⇒ n(n+1)2 [ 2n+13 - 1] = 330
⇒ n(n+1)2. 2(n−1)3 = 330
⇒ n(n+1)(n-1) = 990 ⇒ n = 10.