The correct option is A 54
t2+t+1=0
⇒t=−1+i√32,−1−i√32=w,w2
Let t=w⇒1t=1w=w2
∴t+1t=w+w2=−1
If r is not divisile by 3,then
tr+1tr=wr+(w2)r=wr+w2r=−1
If r is divisible by 3,then
tr+1tr=2
Hence (t+1t)2+(t2+1t2)2+(t3+1t3)2....+(t27+1t27)2
=(1+1+1+....18 times)+(4+4+4+....9 times)=54