If tan−1x+tan−1y+tan−1z=π, then x+y+z is equal to [Kerala (Engg.) 2002]
xyz
0
1
2xyz
tan−1x+tan−1y+tan−1z=π⇒tan−1[x+y+z−xyz1−xy−yz−zx]=π⇒x+y+x−xyz=0⇒x+y+x=xyz
If x + y + z = xyz, then tan-1x + tan-1y + tan-1z =
If tan−1x+tan−1y+tan−1z=π2,then xy+yz+zx=