If tanA-B=1 and secA+B=23, then the smallest positive value of B is
2524π
1924π
1324π
1124π
Explanation for the correct option
Given that tanA-B=1 and secA+B=23
⇒A-B=tan-11=π4 and A+B=sec-123=π6
To get positive value of B, A-B should be less than A+B
∴A+B can be re-written as 2π-π6
∴A+B-A-B=2π-π6-π4⇒2B=24π-2π-3π12⇒B=1924π
Hence the correct option is option(B) i.e. 1924π
If tan(A - B)=1, sec (A + B)= 2√3, then the smallest positive value of B is