If tanα=17,tanβ=13, then cos2α=
sin2β
sin4β
sin3β
None of these
Explanation for the correct option:
tanα=17,tanβ=13
tan2β=2tanβ1-tan2β=2131-132=231-19=2389=34
Now tanα+2β=tanα+tan2β1-tanαtan2β
Then,
tanα+2β=17+341-1734=25282528=1
∴tanα+2β=1tanα+2β=tanπ4α+2β=π4α=π4-2β2α=π2-4βcos2α=cosπ2-4β∴cos2α=sin4β
Hence, the correct option is (B).
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
The product of the following series (1+11!+12!+13!+...) × (1−11!+12!−13!+...) is