wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tanβ=nsinαcosα1nsin2α prove that tan(αβ)=(1n)tanα .

Open in App
Solution

LHS = tan(αβ)= tanα tanβ1+ tanα tanβ
tanαn sinα cosα1n sin2α1+ tanα.n sinα cosα1n sin2α

= tanαn sin2α tanαn sinα cosα1n sin2 alpha+n tanα sinα cosα

= tanα(1n sin2αn cos2α tanα( cotαn sinα cosα+n sinα cosα

=1n( sin2α+ cos2α) cotα

=1n cotα

=(1n) tanα

= RHS


flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon