wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan θ = 2021, show that1-sinθ+cosθ1+sinθ+cosθ=37.

Open in App
Solution

Let us consider a right ABC right angled at B and C=θ.
Now, we know that tan θ = ABBC = 2021

So, if AB = 20k, then BC = 21k, where k is a positive number.
Using Pythagoras theorem, we get:
AC2 = AB2 + BC2
⇒ AC2= (20k)2 + (21k)2
⇒ AC2 = 841k2
⇒ AC = 29k
Now, sin θ = ABAC = 2029 and cos θ = BCAC = 2129

Substituting these values in the given expression, we get:
LHS=1 - sinθ + cosθ1 + sinθ + cosθ= 1 - 2029 + 21291 + 2029 + 2129= 29 - 20 + 212929 + 20 + 2129= 3070 = 37 = RHS
∴ LHS = RHS

Hence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Complementary Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon