If tan(θ)=17, then cosec2θ-sec2θcosec2θ+sec2θ is equal to
12
34
54
2
Explanation for the correct option
Given: cosec2θ-sec2θcosec2θ+sec2θ
=1sin2θ-1cos2(θ)1sin2(θ)+1cos2(θ)
multiplying sin2(θ) to both numerator and denominator
=sin2θsin2θ-sin2θcos2(θ)sin2θsin2(θ)+sin2θcos2(θ)=1-tan2θ1+tan2θ=1-1721+172∵tanθ=17=7-177+17=68=34
Hence, option B is correct.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If 109+2111108+3112107+.........+10119=k109, then k is equal to