If (tan θ + cot θ) = 5 then (tan2 θ + cot2 θ) = ?
(a) 27 (b) 25 (c) 24 (d) 23
(tan θ + cot θ) = 5 (given)
(tanθ+cotθ)2=(5)2(squaring both sides)
tan2θ+cot2θ+2×tanθ×cotθ=25
[∵(a+b)2=a2+b2+2ab]
tan2θ+cot2θ+2×1=25
∵tanθ×cotθ=tanθ×1tanθ=1)
tan2θ+cot2θ=25−2=23