If tanθ+secθ=ex, then cosθ equals
2ex+e−x
2ex+e−x
We have:
tanθ+secθ=ex
secθ+tanθ=ex......(1)
⇒1secθ+tanθ=1ex
⇒sec2θ−tan2θsecθ+tanθ=1ex
⇒(secθ+tanθ)(secθ−tanθ)(secθ+tanθ)=1ex
∴secθ−tanθ=1ex.....(2)
Adding (1)and (2):
2secθ=ex+1ex
⇒2secθ=(ex)2+1ex
⇒secθ=e2x+12ex
⇒secθ=12×e2x+1ex
⇒secθ=12×(ex+e−x)
⇒1cosθ=ex+e−x2
⇒cosθ=2ex+e−x