If tan(θ)=t, then tan(2θ)+sec(2θ)=
1+t1-t
1-t1+t
2t1-t
2t1+t
Explanation for correct option:
Trigonometry identity:
Given: tan(θ)=t
∴tan(2θ)+sec(2θ)=2tan(θ)1-tan2(θ)+1cos(2θ)[tan(2x)=2tan(x)1-tan2(x)]⇒tan(2θ)+sec(2θ)=2tan(θ)1-tan2(θ)+1+tan2(θ)1-tan2(θ)[cos(2x)=1-tan2(x)1+tan2(x)]⇒tan(2θ)+sec(2θ)=2tan(θ)+1+tan2(θ)1-tan2(θ)⇒tan(2θ)+sec(2θ)=1+tan(θ)21-tan2(θ)⇒tan(2θ)+sec(2θ)=1+t21-t2[∵tan(θ)=t]⇒tan(2θ)+sec(2θ)=1+t21-t(1+t)⇒tan(2θ)+sec(2θ)=1+t1-t
Hence, option A is correct.
If cot-1(α)+cot-1(β)=cot-1(x), then x