Let us put tanθ=t1,tanϕ=t2
∴t21t22=(a−ba+b)
or (a+b)t21t22=a−b ....(1)
Also cos2θ=1−tan2θ1+tan2θ=1−t211+t21 etc.
Now a - b cos 2θ=a−b(1−t21)(1+t21)=(a−b)+(a+b)t21(1+t21)
Put for (a - b) from (1),
=a+b(1+t21)[t21t22+t21]=(a+b)t21(1+t22)(1+t21),
Similarly, a - b cos 2ϕ=(a+b)1+t22t22(1+t21)
∴ (a - b cos 2θ) (a - b cos 2ϕ) = (a+b)2 t21t22
=(a+b)2{(a−b)/(a+b)}=a2−b2,
which is independent of θ.