If tanθ=x−14x, then sec \theta-tan \theta is equal to
−2x,12x
(a)−2x,12x
We have,
tanθ=x−14x
⇒sec2θ=1+tan2θ
⇒sec2θ=1+(x−14x)2
⇒sec2θ=x2+116x2+12
⇒sec2θ=(x+14x)2
∴secθ=±(x+14x)
⇒secθ−tanθ
=(x+14x)−(x−14x)or−(x+14x)−(x−14x)
=x+14xx+14xorx−14xx+14x
=24x or−2x
=12x or−2x
Hence (a)−2x,12x