The correct option is D (n+1)24n
Let, z=sec2(x−y)=1+tan2(x−y)
⇒z=1+(tanx−tany1+tanxtany)2=1+(ntany−tany1+ntan2y)2
⇒z=1+(n−1)2(tany1+ntan2y)2=1+(n−1)2(t1+nt2)2 by putting t=tany
Now for max value of z we have dzdt=0
⇒2(n−1)2(t1+nt2)(1+nt2−t(2nt)(1+nt2)2)=0
⇒1−nt2=0⇒t2=1n
Hence zmax=1+(n−1)2(1/n(1+n(1/n))2)=1+(n−1)24n=(n+1)24n