If tanx+tan(x+π3)+tan(x+2π3)=3,then
The given equation can be written as
tanx+tanx+tan(π3)1−tanxtan(π3)+tanx+tan(2π3)1−tanxtan(2π3)=3
⇒tanx+tanx+√31−√3tanx+tanx−√31+√3tanx=3
⇒tanx+(tanx+√3)(1+√3tanx)+(1−√3tanx)(tanx−√3)1−3tan2x=3
⇒tanx+8tanx1−3tan2x=3
⇒tanx(1−3tan2x)+8tanx1−3tan2x=3
⇒3(3tanx−tan3x)1−3tan2x=3⇒3tan3x=3
⇒tan3x=1