If tanx+tan(x+π3)+tan(x+2π3)=3, prove that 3tan x−tan3x1−3tan2 x=1.
Or
If sinθ=nsin(θ+2α), prove that tan(θ+α)=1+n1−ntanα.
we have ,tanx+tan(x+π3)+tan(x+2π3)=3
⇒tanx+tan(x+π3)+tan(x+π−π3)=3
⇒tanx+tan(x+π3)+tan{π+(x−π3)}=3
⇒tanx+tan(x+π3)+(x−π3)=3
[∵tan(π+θ)=tanθ] ⇒tanx+tanx+tanπ31−tanx.tanπ3+tan x−tanπ31+tan x.π3
[∵tan(A+B)=tanA+taB1−tanA tanBand tan(A−B)=tanA−tanB1+tanA tanB]
⇒[tanx−3tan3x+tan x+√3tan2x+√3+3tan x+tan x√3tan2x−√3+3tan x]1−3tan2x=3
⇒9tan x−tan3 x1−3tan2 x=3⇒3tan x−tan3x1−3tan2x=1
Hence proved
Or
We have, sinθ=nsin(θ+2α)
⇒sin(θ+2α)sinθ=1n
⇒sin(θ+2α)+sinθsinθ=1+n1−n
[using componendo and dividendo rule]
⇒2sin(θ+2α+θ)2cos(θ+2α−θ)22cos(θ+2α+θ)2sin(θ+2α−θ)2=1+n1−n
[∵sin C+sinD=2sin(C+D2)cos(C−D2)and sin C−sin D=2cos(C+D2)sin(C−D2)]
⇒2sin(θ+α)cosα2cos(θ+α)sinα=1+n1−n
⇒tan(θ+α)cotα=1+n1−n
∴tan(θ+α)=1+n1−ntanα Hence proved.