If tanx×tany=a and x+y=π6, then tanx and tany satisfy the equation
A
x2−√2(1−a)x+a=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
√3x2−(1−a)x+a√3=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
x2+√3(1−a)x−a=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
√3x2+(1+a)x−a√3=0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A√3x2−(1−a)x+a√3=0 If tanxtany=a and x+y=π6 tanπ6=tan(x+y) =tanx+tany1−a ⇒1−a√3=tanx+tany So x & y satisfy the equation √3x2−(1−a)x+a√3=0