We have,
tanx+tan(x+π3)+tan(x+2π3)=3
⇒tanx+[tanx+tanπ31−tanx×tanπ3]+[tanx+tan(2π3)1−tanx×tan2π3]=3
⇒tanx+[tanx+√31−√3tanx]+[tanx+tan(π2+π3)1−tanxtan(π2+π3)]=3
tanx+tanx+√31−√3tanx+tanx−√31+√3tanx=3
⇒tanx+tanx+√31−√3tanx+tanx−√31+√3tanx=3
⇒tanx+(tanx+√3)(1+√3tanx)+(tanx−√3)(1−√3tanx)(1−√3tanx)(1+√3tanx)=3
⇒tanx+tanx+√3tan2x+√3+3tanx+tanx−√3tan2x−√3+3tanx1−(√3tanx)2=3
⇒tanx+8tanx1−3tan2x=3⇒tanx(1−3tan2x)+8tanx1−3tan2x=3
⇒tanx−3tan3x+8tanx1−3tan2x=3⇒9tanx−3tan3x1−3tan2x=3
⇒3(3tanx−tan2x)1−3tan2x⇒3tanx−tan3x1−3tan2x=1
Hence proved.