wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the angle between the lines represented by ax2+2hxy+by2=0 is equal to the angle between line 2x25xy+3y2, then show that 100(h2ab)=(a+b)2.

Open in App
Solution

Let the angle between the lines is θ

Given equations are ax2+2hxy+by2=0,2x25xy+3y2=0

we know that

cosθ=a+b(ab)2+4b2

For 2x25xy+3y2

a=2,b=3,h=52

so a+b(ab)2+4b2=2+3(23)2+4(52)2

a+b(ab)2+4b2=51+25=526

squaring on both sides

26(a+b)2=25(ab)2+100b2

we know that

(a+b)2=(ab)2+4ab

So 26(a+b)2=25((a+b)24ab)+100b2

26(a+b)2=25(a+b)2100ab+100b2

(a+b)2=100(b2ab)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle between Two Planes
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon