The correct option is C −15
The angle between the lines represented by ax2+2hxy+by2+2gx+2fy+c=0 is given by tan−1(±2√h2−aba+b)
So, the angle between the lines represented by 2x2+5xy+3y2+6x+7y+4=0 is
tan−1m=tan−1(±2√h2−aba+b)
Here, a=2,b=3,h=52
⇒tan−1m=tan−1⎛⎜
⎜
⎜
⎜⎝±2√254−62+3⎞⎟
⎟
⎟
⎟⎠
⇒tan−1m=tan−1(±15)
⇒m=±15
Alternate Solution :
2x2+5xy+3y2+6x+7y+4=0⇒(x+y)(2x+3y)+(2x+3y)+4(x+y)+4=0⇒(2x+3y)((x+y)+1)+4(x+y+1)=0⇒(x+y+1)(2x+3y+4)=0
So lines will be x+y+1=0; 2x+3y+4=0
So angle between the lines will be
tan−1m=tan−1⎛⎜
⎜
⎜⎝±−1+231+23⎞⎟
⎟
⎟⎠⇒m=±15