If the area AMBECL is 1/nth of the field, then sinθ+(π−θ)cosθ is equal to
A
nπ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n−1nπ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
(n−1)π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(n+1)π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bn−1nπ ∠AOB=θ⇒∠OAB+∠OBA=π−θ⇒∠OAB=π2−θ2 Gives AB=2Rcos(π2−θ2) ...(1) Area of segment AMB = Area of sector AMB - Area of ΔAOB AB=2Rcos(π2−θ2)=2Rsin(θ/2)=12R2θ−12AB×Rsin(θ2−π2) =12R2θ−12×2R(θ2)×Rcos(θ2)=12R2(θ−sinθ) ...(2) Now, Area of AMBECL =2( Area of AMBEOA) ⇒1nπR2=2 Area of sector ABE + Area of segment AMB =12R2θ−12×2R(θ2)×Rcos(θ2)=12R2(θ−sinθ)⇒1nπR2=2[12(AB)2(π2−θ2)+12R2(θ−sinθ)]=2[12×4R2sin2θ2(π2−θ2)+12R2(θ−sinθ)]=R2[(1−cosθ)(π−θ)+θ−sinθ]=R2[π−(π−θ)cosθ−sinθ