The correct option is B −2
From point (1),
S1:x2+y2+kx+y=0⇒C1≡(−k2,−12)
S2:x2+y2+4x−2y=0⇒C2≡(−2,1)
(S2−S1)=0, Given equation of common tangent of a two touching circle.
∴(4−k)x−3y=0___(1)
Put y=(4−k3)x in S1.
⇒x2+(4−k)29x2+kx−(k−4)3x=0
x2(25−16k+k2)9+(2k+4)3x=0
D=0
(2k+4)2=0
k=−2