The correct option is A 1<r<11
x2+y2−16x−20y+164=r2
⇒(x−8)2+(y−10)2=r2
(x−4)2+(y−7)2=36=62
∴ The distance between their centres is,
C1C2=√(8−4)2+(10−7)2
C1C2=5
As we know,
|r−6|<C1C2<r+6
|r−6|<5<|r+6|
If |r−6|<5
⇒ r−6<5 and r−6>−5
⇒ r<11 and r>1
∴ r∈(1,11) ...(1)
and |r+6|>5
⇒ r+6>5 and r+6<−5
∴ r ∈ (−∞,−11)∪(−1,∞) ...(2)
From (1) and (2),
r ∈ (1,11)