wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the determinant D= ∣ ∣ ∣111α+βα2+β22αβα+β2αβα2+β2∣ ∣ ∣ and D1= ∣ ∣1000αβ0βα∣ ∣, then find the determinant of D2 such that D2=DD1.

Open in App
Solution

∣ ∣ ∣111α+βα2+β22αβα+β2αβα2+β2∣ ∣ ∣and


∣ ∣1000αβ0βα∣ ∣tofindD2=DD1


Now,

D=∣ ∣ ∣111α+βα2+β22αβα+β2αβα2+β2∣ ∣ ∣


= ∣ ∣ ∣11(α+β)1α+β2αβ2αβα+βα+βα2+β2∣ ∣ ∣{c2c2(α+β)c1}


= ∣ ∣ ∣1(α+β)1α+β02αβα+β0α2+β2∣ ∣ ∣{c2c2c3}\quad


= {(α+β)α+β2αβα+βα2+β2},expandigwithR1

= (α+β)α+β2αβα+βα2+β2

=(α+β)α+β2αβ0α2+β22αβ {R2R2R1}


=(α+β)α+β2αβ0(αβ)2


=(α+β)×(α+β)(αβ)2 , expanding the determinant

=(α+β)2(αβ)2

=[(α+β)(αβ)]2

=[α2β2]

Again,

D1=∣ ∣1000αβ0βα∣ ∣

=1(α2β2) , expanding by R1

=(α2β2)

Now, DD1=(α2β2)2α2β2

=α2β2

D2=α2β2



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon