∣∣
∣
∣∣111α+βα2+β22αβα+β2αβα2+β2∣∣
∣
∣∣and
∣∣
∣∣1000αβ0βα∣∣
∣∣tofindD2=DD1
Now,
D=∣∣
∣
∣∣111α+βα2+β22αβα+β2αβα2+β2∣∣
∣
∣∣
= ∣∣
∣
∣∣11−(α+β)1α+β2αβ2αβα+βα+βα2+β2∣∣
∣
∣∣{c2⟶c2−(α+β)c1}
= ∣∣
∣
∣∣1−(α+β)1α+β02αβα+β0α2+β2∣∣
∣
∣∣{c2⟶c2−c3}\quad
= −{−(α+β)∣∣∣α+β2αβα+βα2+β2∣∣∣},expandigwithR1
= (α+β)∣∣∣α+β2αβα+βα2+β2∣∣∣
=(α+β)∣∣∣α+β2αβ0α2+β2−2αβ∣∣∣ {R2→R2−R1}
=(α+β)∣∣∣α+β2αβ0(α−β)2∣∣∣
=(α+β)×(α+β)(α−β)2 , expanding the determinant
=(α+β)2(α−β)2
=[(α+β)(α−β)]2
=[α2−β2]
Again,
D1=∣∣
∣∣1000αβ0βα∣∣
∣∣
=1(α2−β2) , expanding by R1
=(α2−β2)
Now, DD1=(α2−β2)2α2−β2
=α2−β2
D2=α2−β2