If the eccentricity of hyperbola x2−y2 sec2 α =5 is √3 times the eccentricity of the ellipse x2 sec2 α +y2=25,then α=
π4
The hyperbola x2−y2 sec2 α =5 can be rewritten in the following way:
x25−y25cos2 α=1
This is the standard form of a hyperbola,where a2=5 and b2 =5 cos2 α
⇒b2=a2(e22−1)
⇒5cos2 α=5 (e22−1)
⇒e21=cos2 α+1 ...(1)
The ellipse x2 sec2α+y2=25 can be rewritten in the following way:
x225cos2 α+y225=1
The is the standard form of an ellipse,whereα2=25 and b2=25 cos2 α
b2=a2(1−e22)
⇒e22=1−cos2 α
⇒e22=sin2 α
According to the question,
cos2 α+1=3 (sin2 α)
⇒2=4 sin2 α
⇒α =π4