If the equation of the tangent to the circle x=3+5cos θ, y=−1+5sinθ at the point (0,3) is Px+qy+r =0 and p>0 then p + q =
-1
x = 3+5cos θ (0,3)
y = −1+5sin θ x(0)+y(3)−3(x+0)+1(y+3)−15 = 0
(x−3)2+(y+1)2 = 52 ⇒−3x+4y−12 = 0
x2+y2−6x+2y−15 =0 ⇒3x−4y+12 = 0 p = 3
px+qy+r = 0 q = -4
p + q = -1