1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Particular Solution of a Differential Equation
If the equati...
Question
If the equation
sin
−
1
(
x
−
4
)
+
cos
−
1
(
x
−
6
)
+
tan
−
1
(
40
15
+
x
2
)
=
m
holds, then value of
′
m
′
is
A
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3
π
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
7
π
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
C
7
π
4
−
1
≤
x
−
4
≤
1
,
−
1
≤
x
−
6
≤
1
3
≤
x
≤
5
∩
5
≤
x
≤
7
so,
x
=
5
is only point in domain.
Therefore
m
=
sin
−
1
(
1
)
+
cos
−
1
(
−
1
)
+
tan
−
1
(
40
40
)
⇒
m
=
π
2
+
π
+
π
4
=
7
π
4
Suggest Corrections
0
Similar questions
Q.
if
s
i
n
−
1
(
x
−
1
)
+
c
o
s
−
1
(
x
−
3
)
+
t
a
n
−
1
(
x
2
−
x
2
)
=
c
o
s
−
1
k
+
π
, then the value of
k
is
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) Given
0
≤
x
≤
1
2
then the value of
t
a
n
[
s
i
n
−
1
{
x
√
2
+
√
1
−
x
2
√
2
}
−
s
i
n
−
1
x
]
is
(b) If
α
=
s
i
n
−
1
4
5
+
s
i
n
−
1
1
3
and
β
=
c
o
s
−
1
4
5
+
c
o
s
−
1
1
3
,
Q.
The set of values of
x
for which
tan
−
1
x
√
1
−
x
2
=
sin
−
1
x
holds is
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) If
t
a
n
−
1
√
1
+
x
2
−
√
1
−
x
2
√
(
1
+
x
2
)
+
√
(
1
+
x
2
)
=
α
. then prove that
x
2
=
s
i
n
2
α
(b) If
m
t
a
n
(
α
−
θ
)
c
o
s
2
θ
=
n
t
a
n
θ
c
o
s
2
(
α
−
θ
)
, then prove that
θ
=
1
2
[
α
−
t
a
n
−
1
(
n
−
m
n
+
m
t
a
n
α
)
]
(c)
c
o
s
−
1
c
o
s
α
+
c
o
s
β
1
+
c
o
s
α
c
o
s
β
=
2
t
a
n
−
1
(
t
a
n
α
2
t
a
n
β
2
)
Q.
Inverse circular functions,Principal values of
s
i
n
−
1
x
,
c
o
s
−
1
x
,
t
a
n
−
1
x
.
t
a
n
−
1
x
+
t
a
n
−
1
y
=
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
<
1
π
+
t
a
n
−
1
x
+
y
1
−
x
y
,
x
y
>
1
.
(a) Find whether
x
=
2
satisfies the equation
t
a
n
−
1
x
+
1
x
−
1
+
t
a
n
−
1
x
−
1
x
=
t
a
n
−
1
(
−
7
)
If not, then how should the equation be re-written ?
(b)
t
a
n
−
1
4
3
+
t
a
n
−
1
5
6
+
t
a
n
−
1
39
2
−
π
=
.
.
.
.
.
(c) If
x
1
,
x
2
,
x
3
,
x
4
are roots of equation
x
4
−
x
3
s
i
n
2
β
+
x
2
c
o
s
2
β
−
x
c
o
s
β
−
s
i
n
β
=
0
, then prove that
∑
4
i
=
1
t
a
n
−
1
x
1
=
π
2
−
β
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Explore more
Particular Solution of a Differential Equation
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app