wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the expression [sin(x2)+cos(x2)+itan(x)][1+2isin(x2)] is real, then the set of all possible values of x is

A
x=nπ+2α,α=tan1k where k(1,2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
x=2nπ+α,α=tan1k where k(1,2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
x=2nπ+2α,α=tan1k where k(1,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C x=2nπ+2α,α=tan1k where k(1,2)
(sinx2+cosx2)itanx1+2isinx2
=(sinx2+cosx2itanx)(12isinx2)1+4sin2x2
Since, it is real, so imaginary part will be zero.
2sinx2(sinx2+cosx2)tanx=0
2sinx2(sinx2+cosx2)cosx+2sinx2cosx2=0
sinx2[(sinx2+cosx2)(cos2x2sin2x2)+cosx2]=0
sinx2=0x=2nπ ...(1)
Or (sinx2+cosx2)(cos2x2sin2x2)+cosx2=0
On dividing by cos3x, we have
(tanx2+1)(1tan2x2)+(1+tan2x2)=0
tan3x2tanx22=0
Put tanx2=t and f(t)=t3t2
Thus f(1)=2<0 and f(2)=4>0
Thus f(t) changes sign from negative to positive in the interval (1,2)
Therefore let t=k be the root for which f(k)=0 and kϵ(1,2)
t=k or tanx2=k=tan2
x2=nπ+α
x=2nπ+2α,α=tan1k where k(1,2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon