The correct option is C x=2nπ+2α,α=tan−1k where k∈(1,2)
(sinx2+cosx2)−itanx1+2isinx2
=(sinx2+cosx2−itanx)(1−2isinx2)1+4sin2x2
Since, it is real, so imaginary part will be zero.
∴−2sinx2(sinx2+cosx2)−tanx=0
⇒2sinx2(sinx2+cosx2)cosx+2sinx2cosx2=0
⇒sinx2[(sinx2+cosx2)(cos2x2−sin2x2)+cosx2]=0
∴sinx2=0⇒x=2nπ ...(1)
Or (sinx2+cosx2)(cos2x2−sin2x2)+cosx2=0
On dividing by cos3x, we have
(tanx2+1)(1−tan2x2)+(1+tan2x2)=0
⇒tan3x2−tanx2−2=0
Put tanx2=t and f(t)=t3−t−2
Thus f(1)=−2<0 and f(2)=4>0
Thus f(t) changes sign from negative to positive in the interval (1,2)
Therefore let t=k be the root for which f(k)=0 and kϵ(1,2)
∴t=k or tanx2=k=tan2
⇒x2=nπ+α
⇒x=2nπ+2α,α=tan−1k where k∈(1,2)