If the function f(x) defined by f(x)=x100100+x9999+...+x22+x+1, then f'(0) is equal to:
100f'(0)
100
1
-1
Explanation for the correct option
Given function, f(x)=x100100+x9999+...+x22+x+1
Upon differentiating, we get,
⇒f'(x)=100x99100+99x9899+...+2x2+1+0 ∵ddxxn=nxn-1
⇒f'(x)=x99+x98...+x+1
Now we need to evaluate for x=0, so upon substituting we get,
⇒f'(0)=0+0+...+0+1⇒f'(0)=1
Hence, option (C), i.e. 1 is the correct answer.
Use the factor theorem to determine whether g(x) is a factor of f(x)
f(x)=22x2+5x+2;g(x)=x+2