wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the line xcosα+ysinα=p be tangent to the ellipse x2a2+y2b2=1, then?

Open in App
Solution

xcosα+ysinα=p
y=12xcosαsinα(i)
x2a2+y2b2=1
b2x2+a2y2=a2b2
b2x2+a2(pcscαxcotα)2=a2b2
x2[b2+a2cot2α]2a2(pcscαcotα)x+a2(p2csc2x62)=0(ii)
If xcosα+ysinα=p is tangent to x2a2+y2b2=1, then equation (ii) has equal roots.
4a4p2csc2α4(b2+02cot2α)(a2p2csc2αa2b2)=0
b2p2csc2αb4a2b2cot2α=0
p2b2sin2αa2cos2α=0
p2=a2cos2α+b2sin2α
Hence, solved.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sound Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon