If the line y=√3x−3 cuts the parabola y2=x+2 at P and Q and if A be the point (√3,0) , then AP.AQ is
(√3(x−√3))2=x+2
3(x2−2√3x+3)=x+2
3x2−6√3x−x+7=0
PA.AQ=√(x1−p√3)2+y21√(x2−√3)2+y22
=√(x1−√3)2+(√3(x2−√3))2√(x2−√3)+(√3(x2−√3))2
=4(x1−√3)(x2−√3)
=4(x1x2−√3(x1+x2)+3)
=4(73−√3(6√3+1)3+3)
=−43(√3+2)