Geometrical Representation of Algebra of Complex Numbers
If the locus ...
Question
If the locus of the centre of a circle which touches the line xcosα+ysinα=p and the circle (x−a)2+(y−b)2=c2 is (x−a)2+(y−b)2=(xcosα+ysinα+k)2 then k=
A
p
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
−p±c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
pc
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−p
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A−p±c If (x−a)2+(y−b)2=(xcosα+ysinα+k)2 touches (x−a)2+(y−b)2=c2 then c2=(xcosα+ysinα+k)2 xcosα+ysinα+k=c or xcosα+ysinα+k=−c p+k=c or p+k=−c k=c−p or k=−c−p So, k=−p+−c