If the parabolas
25{(x−3)2+(y+2)2}=(3x−4y−2)2,y2=λx
are equal, then λ is
Parabolas are equal if length of their latus rectam are equal
∴(x−3)2+(y+2)2=(3x−4y−2)225⇒√(x−3)2+(y+2)2=|3x−4y−2|5
∴ LLR=2 Distance between focus and directrix=2∣∣∣3×3−4×(−2)−2√32+(−4)2∣∣∣=6
Also LLR of y2=λx is λ
∴λ=6