If the point of minima of the function, f(x)=1+a2x−x3 satisfy the inequality x2+x+2x2+5x+6<0, then 'a' must lie in the interval
A
(−3√3,3√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
(−2√3,3√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(2√3,3√3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(−3√3,−2√3)∪(2√3,3√3)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D(−3√3,−2√3)∪(2√3,3√3) The Given inequality is x2+x+2x2+5x+6<0 ⇒x2+x+2(x+2)(x+2)<0, Numerator is positive for all real values of x ⇒−3<x<−2 Now f(x)=1+a2x−x3 ⇒f′(x)=a2−3x2=(a−√3x)(a+√3x) For minima of f(x) f′(x)=0⇒x=±a√3 Also f′′(x)=−6x If a>0,−3<−a√3<−2