Since the point P(x,y) is equidistant from the points A(a+b,b−a)≡(x1,y1) and B(a−b,a+b)≡(x2,y2).
Using distance formula,
Distance Formula =√(x−x1)2+(y−y1)2
PB=√(x−(a−b))2+(y+(a+b))2
Therefore, PA=PB
√(x−(a+b))2+(y+(b−a))2=√(x−(a−b))2+(y+(a+b))2
Squaring on both the sides,
(x−(a+b))2+(y+(b−a))2=(x−(a−b))2+(y+(a+b))2
x2+(a+b)2−2x(a+b)+y2+(b−a)2−2y(b−a)=x2+(a−b)2−2x(a−b)+y2+(a+b)2−2y(b+a)
−2x(a+b)−2y(b−a)=−2x(a−b)−2y(b+a)
−2ax−2bx−2by+2ay=−2ax+2bx−2by−2ay
−4bx=−4ay
bx=ay
Hence proved.