If the polynomial P(x)=24x4+λ1x3+λ2x2+λ3x+1, where λ1,λ2,λ3∈R has four positive real roots α,β,γ,δ such that α+2β+3γ+4δ=4, then
A
λ1+λ2+λ3=−25
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
λ1=−50
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
λ3=−10
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
λ3=25
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Aλ1+λ2+λ3=−25 Bλ1=−50 Cλ3=−10 α,β,γ,δ are roots of the polynomial P(x)=24x4+λ1x3+λ2x2+λ3x+1 ∴αβγδ=124 and α+2β+3γ+4δ=4 We know, A.M≥G.M.⇒α+2β+3γ+4δ4≥(α⋅2β⋅3γ⋅4δ)1/4 But, α+2β+3γ+4δ4=(α⋅2β⋅3γ⋅4δ)1/4 Therfore, α=2β=3γ=4δ=1 ⇒α=1,β=12,γ=13,δ=14 α+β+γ+δ=−λ124⇒λ1=−50 αβγ+βγδ+γδα+δαβ=−λ324⇒αβγδ(1α+1β+1γ+1δ)=−λ324⇒124(1+2+3+4)=−λ324⇒λ3=−10 ∵α is a root of the given polynomial. ∴24+λ1+λ2+λ3+1=0⇒λ1+λ2+λ3=−25 ∴λ2=35