z=x+cy⇒1−z1+z=[1−x−cy1+x+cy]=(1−x−cy)(1+x−cy)(1+x+cy)(1+x−cy)=1+x−cy−x−x2+cxy−cy−cxy+x2y2(1+x)2+y2=1−x2−y2−2xy(1+x)2+y2
So, =1−x2−y2(1+x)2+y2=01−x2−y2=0x2+y2=1|z|=√x2+y2=√1=1
If z−1z+1 is purely imaginary number (z≠−1), find the value of |z|.