The correct option is D a2d=bc2
Let α1,β1 be the roots of x2+ax+b=0 and α2,β2 be the roots of x2+cx+d=0.
α1+β1=−a, α1β1=b
α2+β2=−c, α2β2=d
Given that α1β1=α2β2
⇒α1+β1α1−β1=α2+β2α2−β2
⇒(α1+β1)2(α1−β1)2=(α2+β2)2(α2−β2)2
⇒(α1+β1)2(α1+β1)2−4α1β1=(α2+β2)2(α2+β2)2−4α2β2
⇒a2a2−4b=c2c2−4d
⇒a2d=bc2