If the series 1+x3⌊3+x6⌊6+....,x+x4⌊4+x7⌊7+.....,x2⌊2+x5⌊5+x8⌊8+..... are denoted by a, b, c respectively, show that a3+b3+c3−3abc=1.
Open in App
Solution
If ω is an imaginary cube root of unity, a3+b3+c3−3abc=(a+b+c)(a+ωb+ω2c)(a+ω2b+ωc). Now a+b+c=1+x+x2⌊2+x3⌊3+x4⌊4+x5⌊5.... =ex; and a+ωb+ω2c=1+ωx+ω2x2⌊2+ω3x3⌊3+ω4x4⌊4+ω5x5⌊5+.... =eωx; similarly a+ω2b+ωc=eω2x. ∴a3+b3+c3−3abc=ex⋅eωx⋅eω2x=e(1+ω+ω2)x =1, since 1+ω+ω2=0.