The correct option is B right angled only when l=c(ab+bc+ca)=c∑ab,m=−abc
sinA,sinB,sinC are the roots of the equation
c3x3−c2(a+b+c)x2+lx+m=0 (where a,b,c are the sides of △ABC)
∴sinA+sinB+sinC=c2(a+b+c)c3=a+b+cc
or a2R+b2R+c2R=a+b+cc
⇒2R=c or c=2R or a+b+c≠0
⇒2RsinC=2R (using sine rule)
∴sinC=1⇒∠C=π2
⇒ Triangle is a right angled triangle.
and ∑sinAsinB=lc3
and product of the roots=sinAsinBsinC=−mc3
Using sine rule,
∑a2R.b2R=lc3 and a2Rb2Rc2R=−mc3
⇒∑abR2=lc3 and abc8R3=−mc3
⇒l=c34R2∑ab and m=−(abc)c38R3
⇒l=(c2R)2c∑ab=sinC.c∑ab
We know that ∠C=π2∴sinC=1
Hence, l=c∑ab=c(ab+bc+ca)
and m=−(abc)(c2R)3
=−(abc)(sinC)3
=−abc ,since sinC=1