CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the sum of lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60.

Open in App
Solution

Let AB be the hypotenuse and let AB+AC=k ...(i)

where k is a constant.




Let AB=x, then

AC=AB cos θ=x cos θ

CB=AB sin θ=x sin θ

x+x cos θ=k from(i).

x=k1+cos θ

Area of triangle = A=12Base×Height

A=12(x cos θ) (x sin θ)

A=12(k1+cos θ)2 sin θ cos θ

A=k22( sin θ cos θ(1+cos θ)2)

Differentiating both sides w.r.t. θ, we get:

dAdθ=k22[(1+cos θ)2(sin2 θ+cos2 θ)sin θ cos θ[2(1+cos θ)(sin θ)](1+cos θ)4]

dAdθ=k22[(1+cos θ)(cos2 θsin2 θ)+2sin2 θ cos θ(1+cos θ)3]

dAdθ=k22(cos3 θ+sin2 θ cos θsin2 θ+cos2 θ(1+cos θ)3), 0<θ<π/2

dAdθ=k22cos θ+cos 2θ(1+cos θ)3,

[ sin2 θ cos θ+cos3 θ=cos θ (sin2θ+cos2 θ)=cos θ]

Now, dAdθ=0cos θ+cos 2θ=0

cos 2θ=cos θ=cos (πθ)

2θ=πθθ=π/3

d2Adθ2=k22((1+cos θ)6[sin θ2sin 2θ]+3(1+cos θ)2.sinθ[cos θ+cos 2θ](1+cos θ)6)

d2Adθ2|π3=k22(1+cos π3)6[sin π32sin (2π3)]+3(1+cos π3)2.sinπ3[cos π3+cos 2π3](1+cos π3)6

d2Adθ2|π3=k22(1+12)6[322×(32)]+3(1+12)2.32[1212](1+12)6

d2Adθ2|π3=k22(1+12)6[332)]+0(1+12)6=33 k24<0

Therefore the area of the triangle is maximum when the angle between the hypotenuse and one of the sides is π/3.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dot Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon