If the sum of squares of the intercept on the axes cut off by the tangent on the curve x13+y13=a13,a>0 at (a8,a8) is 2, then value of a is
Open in App
Solution
x13+y13=a13
Differentiating w.r.t. x ⇒13x−23+13y−23(dydx)=0 ⇒dydx=−y23x23
At (a8,a8),dydx=−1
Equation of tangent is y−a8=−1(x−a8) ⇒x+y=a4 x−intercept =a4=y−intercept ∴a216+a216=2 ∴a2=16 ∴a=4