If the tangent to the curve x=a(θ+sinθ),y=a(1+cosθ) at θ=π3 makes an angle α(0≤α<π) with x-axis, then α =
x=a(θ+sinθ)
y=a(1+cosθ)
If tangent to curve at θ=π/3, makes angle α with x-axis,
⇒ slope of tangent = tanα
⇒ tanα=dy/dθdx/dθ∣∣∣θ=π/3
=−asinθa(1+cosθ)
−sinθ1+cosθ∣∣∣θ=π/3
=−√3/21+1/2
tanα =−1√3
Ans. α = 5π/6