Since dxdθ=−sinθ, so
dydx=dydθdθdx=−cosecθdydθ
Also,
d2ydx2=ddx(dydx)=ddθ(dydx)dθdx=ddθ(cosecθdydθ)cosecθ
=(−cosecθcotθdydθ+cosecθd2ydθ2)cosecθ
=−cosec2θcotθdydθ+cosec2θd2ydθ2
Putting these in the given differential equation, we get
(1−x)d2ydx2−xdydx+y=0
⇒ (1−cos2θ)(cosec2θcotθdydθ+cosec2θd2ydθ2)−cosθ(−cosecθdydθ)+y=0
−cotθdydθ+d2ydθ2+cotθdydθ+y=0⇒d2ydθ2+y=0
Hence A=1