wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If the transformation x=cosθ. reduces the differential equation (1x2)d2ydx2xdydx+y=0 into d2ydθ2+Ay=0, then the value of A is

Open in App
Solution

Since dxdθ=sinθ, so
dydx=dydθdθdx=cosecθdydθ
Also,
d2ydx2=ddx(dydx)=ddθ(dydx)dθdx=ddθ(cosecθdydθ)cosecθ
=(cosecθcotθdydθ+cosecθd2ydθ2)cosecθ
=cosec2θcotθdydθ+cosec2θd2ydθ2
Putting these in the given differential equation, we get
(1x)d2ydx2xdydx+y=0
(1cos2θ)(cosec2θcotθdydθ+cosec2θd2ydθ2)cosθ(cosecθdydθ)+y=0
cotθdydθ+d2ydθ2+cotθdydθ+y=0d2ydθ2+y=0
Hence A=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon