Given that a = 7 and b = 2
∴ a3- b3 = 73−23 = 343 - 8 = 335 -------(1)
and a3+ b3 = 73+23 = 343 + 8 = 351-----(2)
a3−b3a3+b3 = 335351 = 335p
Comparing , we get p = 351
If the value of (a3−b3a3+b3), when a=7 and b=2 is 335p, then p is 321.
If the value of (a3−b3a3+b3) when a = 7 and b = 2 is 335p, then p is 321.